JM Innovations



National & World Ag News Headlines
Why Do Many Nobel Prizes Go to Scientists Working on Fruit Flies?
USAgNet - 10/19/2017

As night fell, astronomer Jean Jacques d'Ortous de Mairan watched a plant's leaves, symmetrically arranged side-by-side on a stem, clamp shut. It was 1729, and he was studying the dramatic nocturnal movement of Mimosa pudica. Strangely, he found that the plant behaved the same way even when it wasn't exposed to natural cycles of light and dark, making his observation the first known example of a circadian rhythm that didn't depend on external stimuli. Circadian rhythms are biological cycles that repeat daily, matching one full rotation of Earth. After this discovery in a weedy creeper, the planet would rotate tens of thousands more times before scientists studying the daily habits of a household insect exposed the mechanics of the biological clock.

This year's Nobel Prize in Physiology or Medicine was awarded to Jeffrey C. Hall, Michael Rosbash, and Michael W. Young for their studies of the circadian clock in fruit flies. But their discoveries weren't just insect idiosyncrasies--they held true across much of the living world, from animals to plants and even some bacteria. And, as many researchers building on their work have found, circadian rhythms have immense importance in human health.

This story is not an isolated example: it's the sixth time a Nobel Prize has been awarded for the study of fruit flies. In fact, a surprising number of Nobels--along with the insights and practical outcomes of biological research--have emerged from a few seemingly insignificant species: vermin, creepy-crawlies, and microscopic blobs. Alex Cagan's artwork below samples just a few recent examples.

Sometimes, such research has been ridiculed--notably by politicians looking for examples of wasteful spending. In some ways, this is understandable. Research with clear, immediate applications is the easiest type to justify to the public. But the type of science that instead aims to fill gaps in our understanding of the world--known as "basic" or "foundational" research--doesn't focus on specific applications, like a disease cure or a drought-resistant crop, so no one can predict the real-world impact of any individual line of inquiry. However, understanding the world we live in and the creatures we share it with has proven an essential fuel for technological, agricultural, and medical advances.

The most well-studied species on the planet are called model organisms, creatures chosen for intensive research because they are particularly suited to laboratory studies. Fruit flies, for example, have played a crucial role in unraveling the principles of genetics and evolution. Such fundamental insights can eventually lead to human health and other applications, but not in a predictable way.

For instance, in the late 1970s, scientists undertook an epic hunt for genes that affect the development of fruit fly larvae. This work uncovered several important biological pathways that govern how simple eggs transform into complex animals and earned Eric Wieschaus and Christiane Nüsslein-Volhard the Nobel Prize. Among the genes discovered was Hedgehog, named for the spiky embryos that result when it is mutated. Related genes were identified in mammals, and decades of work eventually revealed their connections to cancer and other diseases.

Since 2012, two drugs that specifically inhibit tumor growth by targeting the Hedgehog pathway have been approved by the FDA to treat basal cell carcinoma, giving patients with advanced cases of this type of skin cancer a better chance of survival. Yet Wieschaus and Nüsslein-Volhard hadn't set out to cure a disease--they were simply trying to understand how life works.

Different model organisms cater to different scientific needs. For example, mice and rats are mammals, like humans, which means we share much of our biology. The stripy zebrafish has a transparent embryo that allows scientists to watch development happen in real time. The nematode worm Caenorhabditis elegans can be rapidly grown in dishes, and because its cell divisions can be individually tracked through a precisely defined ballet, it's another good choice for studying development. The mustard cress Arabidopsis thaliana is a fast-growing weed with a tiny genome that is much easier to study than the massive genomes of key crops like wheat and corn.

Without knowing why scientists choose particular species, model organism research can appear frivolous--and some creatures scientists choose to study may even seem disgusting. Take, for example, the dung gnat Sciara coprophila. Studies on this poop-loving insect revealed the phenomenon of genomic imprinting, in which genes are turned on or off depending on whether they were inherited from the father or the mother.

As it turns out, imprinting exists in humans--and has important consequences. For example, there is a stretch of chromosome 15 that is turned off in the copy inherited from the mother but turned on in the paternal copy. If the paternal copy of chromosome 15 is missing or has a mutation in the imprinted region, the result is Prader-Willi syndrome. This serious disease is characterized by cognitive disabilities and constant hunger, often leading to obesity and type 2 diabetes.


Other National Headlines
L&L Sales and Service
Meyer Manufacturing
Copyright © 2024 - Farms.com. All Rights Reserved.